Incorporating new and updated information, this second edition of THE bestselling text in Bayesian data analysis continues to emphasize practice over theory, describing how to conceptualize, perform, and critique statistical analyses from a Bayesian perspective. Its world-class authors provide guidance on all aspects of Bayesian data analysis and include examples of real statistical analyses, based on their own research, that demonstrate how to solve complicated problems. Changes in the new edition include:

  • Stronger focus on MCMC
  • Revision of the computational advice in Part III
  • New chapters on nonlinear models and decision analysis
  • Several additional applied examples from the authors' recent research
  • Additional chapters on current models for Bayesian data analysis such as nonlinear models, generalized linear mixed models, and more
  • Reorganization of chapters 6 and 7 on model checking and data collection

Bayesian computation is currently at a stage where there are many reasonable ways to compute any given posterior distribution. However, the best approach is not always clear ahead of time. Reflecting this, the new edition offers a more pluralistic presentation, giving advice on performing computations from many perspectives while making clear the importance of being aware that there are different ways to implement any given iterative simulation computation. The new approach, additional examples, and updated information make Bayesian Data Analysis an excellent introductory text and a reference that working scientists will use throughout their professional life.


Now in its third edition, this classic book is widely considered the leading text on Bayesian methods, lauded for its accessible, practical approach to analyzing data and solving research problems. Bayesian Data Analysis, Third Edition continues to take an applied approach to analysis using up-to-date Bayesian methods. The authors-all leaders in the statistics community-introduce basic concepts from a data-analytic perspective before presenting advanced methods. Throughout the text, numerous worked examples drawn from real applications and research emphasize the use of Bayesian inference in practice.

New to the Third Edition

  • Four new chapters on nonparametric modeling
  • Coverage of weakly informative priors and boundary-avoiding priors
  • Updated discussion of cross-validation and predictive information criteria
  • Improved convergence monitoring and effective sample size calculations for iterative simulation
  • Presentations of Hamiltonian Monte Carlo, variational Bayes, and expectation propagation
  • New and revised software code

The book can be used in three different ways. For undergraduate students, it introduces Bayesian inference starting from first principles. For graduate students, the text presents effective current approaches to Bayesian modeling and computation in statistics and related fields. For researchers, it provides an assortment of Bayesian methods in applied statistics. Additional materials, including data sets used in the examples, solutions to selected exercises, and software instructions, are available on the book's web page.