Book 33

This collection of challenging and well-designed test problems arising in literature studies also contains a wide spectrum of applications, including pooling/blending operations, heat exchanger network synthesis, homogeneous azeotropic separation, and dynamic optimization and optimal control problems.


Book 37

The vast majority of important applications in science, engineering and applied science are characterized by the existence of multiple minima and maxima, as well as first, second and higher order saddle points. The area of Deterministic Global Optimization introduces theoretical, algorithmic and computational ad vances that (i) address the computation and characterization of global minima and maxima, (ii) determine valid lower and upper bounds on the global minima and maxima, and (iii) address the enclosure of all solutions of nonlinear con strained systems of equations. Global optimization applications are widespread in all disciplines and they range from atomistic or molecular level to process and product level representations. The primary goal of this book is three fold : first, to introduce the reader to the basics of deterministic global optimization; second, to present important theoretical and algorithmic advances for several classes of mathematical prob lems that include biconvex and bilinear; problems, signomial problems, general twice differentiable nonlinear problems, mixed integer nonlinear problems, and the enclosure of all solutions of nonlinear constrained systems of equations; and third, to tie the theory and methods together with a variety of important applications.

Book 48

Global optimization concerns the computation and characterization of global optima of nonlinear functions. Such problems are widespread in the mathematical modelling of real systems in a very wide range of applications and the last 30 years have seen the development of many new theoretical, algorithmic and computational contributions which have helped to solve globally multiextreme problems in important practical applications.
Most of the existing books on optimization focus on the problem of computing locally optimal solutions. Introduction to Global Optimization, however, is a comprehensive textbook on constrained global optimization that covers the fundamentals of the subject, presenting much new material, including algorithms, applications and complexity results for quadratic programming, concave minimization, DC and Lipschitz problems, and nonlinear network flow. Each chapter contains illustrative examples and ends with carefully selected exercises, designed to help students grasp the material and enhance their knowledge of the methods involved.
Audience: Students of mathematical programming, and all scientists, from whatever discipline, who need global optimization methods in such diverse areas as economic modelling, fixed charges, finance, networks and transportation, databases, chip design, image processing, nuclear and mechanical design, chemical engineering design and control, molecular biology, and environmental engineering.

Book 56

This book provides an introduction to the mathematical theory of optimization. It emphasizes the convergence theory of nonlinear optimization algorithms and applications of nonlinear optimization to combinatorial optimization. Mathematical Theory of Optimization includes recent developments in global convergence, the Powell conjecture, semidefinite programming, and relaxation techniques for designs of approximation solutions of combinatorial optimization problems.