Studies in Logic and the Foundations of Mathematics
1 primary work • 3 total works
Book 148
Many-Dimensional Modal Logics
by Professor Dov M Gabbay, A Kurucz, Frank Wolter, and Michael Zakharyaschev
Published 21 October 2003
Modal logics, originally conceived in philosophy, have recently found many applications in computer science, artificial intelligence, the foundations of mathematics, linguistics and other disciplines. Celebrated for their good computational behaviour, modal logics are used as effective formalisms for talking about time, space, knowledge, beliefs, actions, obligations, provability, etc. However, the nice computational properties can drastically change if we combine some of these formalisms into a many-dimensional system, say, to reason about knowledge bases developing in time or moving objects.
To study the computational behaviour of many-dimensional modal logics is the main aim of this book. On the one hand, it is concerned with providing a solid mathematical foundation for this discipline, while on the other hand, it shows that many seemingly different applied many-dimensional systems (e.g., multi-agent systems, description logics with epistemic, temporal and dynamic operators, spatio-temporal logics, etc.) fit in perfectly with this theoretical framework, and so their computational behaviour can be analyzed using the developed machinery.
We start with concrete examples of applied one- and many-dimensional modal logics such as temporal, epistemic, dynamic, description, spatial logics, and various combinations of these. Then we develop a mathematical theory for handling a spectrum of 'abstract' combinations of modal logics - fusions and products of modal logics, fragments of first-order modal and temporal logics - focusing on three major problems: decidability, axiomatizability, and computational complexity. Besides the standard methods of modal logic, the technical toolkit includes the method of quasimodels, mosaics, tilings, reductions to monadic second-order logic, algebraic logic techniques. Finally, we apply the developed machinery and obtained results to three case studies from the field of knowledge representation and reasoning: temporal epistemic logics for reasoning about multi-agent systems, modalized description logics for dynamic ontologies, and spatio-temporal logics.
The genre of the book can be defined as a research monograph. It brings the reader to the front line of current research in the field by showing both recent achievements and directions of future investigations (in particular, multiple open problems). On the other hand, well-known results from modal and first-order logic are formulated without proofs and supplied with references to accessible sources.
The intended audience of this book is logicians as well as those researchers who use logic in computer science and artificial intelligence. More specific application areas are, e.g., knowledge representation and reasoning, in particular, terminological, temporal and spatial reasoning, or reasoning about agents. And we also believe that researchers from certain other disciplines, say, temporal and spatial databases or geographical information systems, will benefit from this book as well.
Key Features:
* Integrated approach to modern modal and temporal logics and their applications in artificial intelligence and computer science
* Written by internationally leading researchers in the field of pure and applied logic
* Combines mathematical theory of modal logic and applications in artificial intelligence and computer science
* Numerous open problems for further research
* Well illustrated with pictures and tables
To study the computational behaviour of many-dimensional modal logics is the main aim of this book. On the one hand, it is concerned with providing a solid mathematical foundation for this discipline, while on the other hand, it shows that many seemingly different applied many-dimensional systems (e.g., multi-agent systems, description logics with epistemic, temporal and dynamic operators, spatio-temporal logics, etc.) fit in perfectly with this theoretical framework, and so their computational behaviour can be analyzed using the developed machinery.
We start with concrete examples of applied one- and many-dimensional modal logics such as temporal, epistemic, dynamic, description, spatial logics, and various combinations of these. Then we develop a mathematical theory for handling a spectrum of 'abstract' combinations of modal logics - fusions and products of modal logics, fragments of first-order modal and temporal logics - focusing on three major problems: decidability, axiomatizability, and computational complexity. Besides the standard methods of modal logic, the technical toolkit includes the method of quasimodels, mosaics, tilings, reductions to monadic second-order logic, algebraic logic techniques. Finally, we apply the developed machinery and obtained results to three case studies from the field of knowledge representation and reasoning: temporal epistemic logics for reasoning about multi-agent systems, modalized description logics for dynamic ontologies, and spatio-temporal logics.
The genre of the book can be defined as a research monograph. It brings the reader to the front line of current research in the field by showing both recent achievements and directions of future investigations (in particular, multiple open problems). On the other hand, well-known results from modal and first-order logic are formulated without proofs and supplied with references to accessible sources.
The intended audience of this book is logicians as well as those researchers who use logic in computer science and artificial intelligence. More specific application areas are, e.g., knowledge representation and reasoning, in particular, terminological, temporal and spatial reasoning, or reasoning about agents. And we also believe that researchers from certain other disciplines, say, temporal and spatial databases or geographical information systems, will benefit from this book as well.
Key Features:
* Integrated approach to modern modal and temporal logics and their applications in artificial intelligence and computer science
* Written by internationally leading researchers in the field of pure and applied logic
* Combines mathematical theory of modal logic and applications in artificial intelligence and computer science
* Numerous open problems for further research
* Well illustrated with pictures and tables
Quantification in Nonclassical Logic
by Department of Computer Science Dov M Gabbay, Dimitrij Skvortsov, and Valentin Shehtman
Published 1 January 2009
Quantification and modalities have always been topics of great interest for logicians. These two themes emerged from philosophy and
language in ancient times; they were studied by traditional informal
methods until the 20th century. In the last century the tools became
highly mathematical, and both modal logic and quantification found numerous applications in Computer Science. At the same time many other kinds of nonclassical logics were investigated and applied to Computer Science.
Although there exist several good books in propositional modal logics, this book is the first detailed monograph in nonclassical first-order quantification. It includes results obtained during the past thirty years. The field is very large, so we confine ourselves with only two kinds of logics: modal and superintuitionistic. The main emphasis of Volume 1 is model-theoretic, and it concentrates on descriptions of different sound semantics and completeness problem --- even for these seemingly simple questions we have our hands full. The major part of the presented material has never been published before. Some results are very recent, and for other results we either give new proofs or first proofs in full detail.
language in ancient times; they were studied by traditional informal
methods until the 20th century. In the last century the tools became
highly mathematical, and both modal logic and quantification found numerous applications in Computer Science. At the same time many other kinds of nonclassical logics were investigated and applied to Computer Science.
Although there exist several good books in propositional modal logics, this book is the first detailed monograph in nonclassical first-order quantification. It includes results obtained during the past thirty years. The field is very large, so we confine ourselves with only two kinds of logics: modal and superintuitionistic. The main emphasis of Volume 1 is model-theoretic, and it concentrates on descriptions of different sound semantics and completeness problem --- even for these seemingly simple questions we have our hands full. The major part of the presented material has never been published before. Some results are very recent, and for other results we either give new proofs or first proofs in full detail.