Teubner Studienbucher Mathematik
2 total works
In der 2. Auflage wird u.a. der Vorteil der Wavelet-Transformation gegenuber der gef. Fourier-Transformation deutlich herausgearbeitet. Die Konstruktionsprinzipien orthogonaler und biorthogonaler Wavelets werden durch Beispiele weitergehend erlautert. Zahlreiche Aufgaben erleichtern das Verstandnis des Stoffes.
Inverse Probleme treten bei der Bestimmung der ein System beschreibenden Parame ter aus Beobachtungen des Systems auf. Ein Beispiel hierfiir ist die Identifizierung einer " Black Box " aus Input und Output. 1st der Input die Intensitiit eines ROntgenstrah les und der Output die Intensitiit des Strahles nach Durchlaufen eines Korpers, so ka. nn man aus vielen Strahlen, etwa einer halben Million, in der Computer - Tomographie die Dichte des durchlaufenen Korpergewebes berechnen. Von der physikalischen Annahme hiingt das mathematische Modell, also die zu behandelnde Gleichung, abo All diesen inver sen Problemen gemein ist, daB die Daten wegen der unvermeidbaren MeBfehler nie exakt gegeben sind. Leider auch gemein ist diesen Problemen, daB die Datenfehler in der LOsung verstiirkt werden. Die von Hadamard eingefiihrte Bezeichnung " schlecht gestellte Pro bleme " ist irrefiihrend, die mathematische Beschreibung eines realen inversen Problems spiegelt natiirlich auch die praktisch vorhandene Instabilitiit wider. Die reizvolle Aufgabe ist nun, eine Niiherungslosung, moglicherweise unter Zuhilfe nahme zusiitzlicher Information, so zu bestimmen, daB die Datenfehler sich nicht iiber ein unvermeidbares MaB hinaus verstiirken. Das Titelbild zeigt eine glatte Kurve, wel che die exakte LOsung eines ungestorten schlecht gestellten Problems darstellt. Die wild oszillierende Funktion ergibt sich bei ( fast ) " naiver " LOsung ohne Beriicksichtigung der Schlechtgestelltheit. Abbildung 5. 1. 1 zeigt die wirklich " naive" Losung, die keine erkennbare Darstellung der anderen Funktionen bei gleichem MaBstab gestattet."