This book - a sequel of previous publications 'Flows and Chemical Reactions' and 'Chemical Reactions in Flows and Homogeneous Mixtures' - is devoted to flows with chemical reactions in heterogeneous environments. Heterogeneous media in this volume include interfaces and lines. They may be the site of radiation. Each type of flow is the subject of a chapter in this volume.

We consider first, in Chapter 1, the question of the generation of environments biphasic individuals: dusty gas, mist, bubble flow. Chapter 2 is devoted to the study at the mesoscopic scale: particle-fluid exchange of momentum and heat with determination of the respective exchange coefficients. In Chapter 3, we establish simplified equations of macroscopic balance for mass, for the momentum and energy, in the case of particles of one size (monodisperse suspension). Radiative phenomena are presented in Chapter 5.


This book - a sequel of previous publications Flows and Chemical Reactions, Chemical Reactions Flows in Homogeneous Mixtures and Chemical Reactions and Flows in Heterogeneous Mixtures - is devoted to flows with chemical reactions in the electromagnetic field.

The first part, entitled basic equations, consists of four chapters. The first chapter provides an overview of the equations of electromagnetism in Minkowski spacetime. This presentation is extended to balance equations, first in homogeneous media unpolarized in the second chapter and homogeneous fluid medium polarized in the third chapter. Chapter four is devoted to heterogeneous media in the presence of electromagnetic field. Balance equations at interfaces therein.

The second part of this volume is entitled applications. It also includes four chapters. Chapter five provides a study of the action of fields on fire. Chapter six deals with a typical application for the Peltier effect, chapter seven is devoted to metal-plasma interaction, especially in the Langmuir probe and finally Chapter Eight deals with the propulsion Hall effect.

Are given in appendix supplements the laws of balance with electromagnetic field and described the methodology for establishing one-dimensional equations for flow comprising active walls as is the case in some Hall effect thrusters.