Chapter I describes deposition as a basic microelectronics technique. Plasma enhanced chemical vapor deposition (PECVD) is a technique widely accepted in microelectronics for the deposition of amorphous dielectric films such as silicon nitride and silicon oxide. The main advantage of PECVD stems from the intro­ duction of plasma energy to the CVD environment, which makes it possible to promote chemical reactions at relatively low temperatures. A natural extension of this is to use this plasma energy to lower the temperature required to obtain a crystalline deposit. This chapter discusses the PECVD technique and its ap­ plication to the deposition of dielectric, semiconductor, and conductor films of interest to microelectronics. Chapter 2 acquaints the reader with the technology and capabilities of plasma processing. Batch etching reactors and etching processes are approaching ma­ turity after more than ten years of development. Requirements of anisotropic and selective etching have been met using a variety of reactor configurations and etching gases. The present emphasis is the integration of plasma etching processes into the overall fabrication sequence. Chapter 3 reviews recent advances in high pressure oxidation technology and its applications to integrated circuits. The high pressure oxidation system, oxi­ dation mechanisms, oxidation-induced stacking faults, impurity segregation, and oxide quality are described. Applications to bipolar and MOS devices are also presented.