Book 103

Funktionentheorie I

by K. Diederich and R. Remmert

Published 1 January 1972
Neue Blicke durch die alten Locher G. CH. liCHTENBERG o. Funktionentheorie ist nach klassischem Sprachgebrauch die Theorie der holomorphen Funktionen einer komplexen Veranderlichen. Der BegrifT der holomorphen Funktion kann im wesentlichen auf drei Weisen eingefUhrt werden: einmal durch die Forderung nach komplexer DifTerenzierbarkeit, zum anderen durch die Bedingung der Existenz einer Stammfunktion im Kleinen, und schlieBlich durch die Voraussetzung der lokalen Entwickelbar keit in eine Potenzreihe. Durch die Aquivalenz dieser methodisch verschiedenen Definitionen gewinnt die Funktionentheorie zu ihrem Reichtum die Ge schlossenheit hinzu, urn derentwillen C. L. Siegel sie in seinen Vorlesungen als ein einmaliges Geschenk an die Mathematiker bezeichnet. Dieses Taschenbuch ist der erste Teil einer zweibandigen Darstellung der Grundlagen der Funktionentheorie, die auf eine an der Universitat MUnster im Sommersemester 1968 und Wintersemester 1968/69 yom zweiten der beiden Autoren gehaltene Vorlesung zurUckgeht. Die beiden Zugange zur Funktionen theorie, die Cauchysche Theorie der komplex difTerenzierbaren Funktionen einschlieBlich der Theorie der Stammfunktionen und die WeierstraBsche Theorie der in Potenzreihen entwickelbaren Funktionen, werden darin zunachst unabhangig voneinander dargelegt. Dadurch wird insbesondere die Tragweite des WeierstraBschen Ansatzes deutlich, die in den heute meist gegebenen gemischten Darstellungen nicht so sichtbar wird. AuBerdem treten die StelJen im .Aufbau der Funktionentheorie besonders klar zu Tage, an denen das Zu sammenwirken der beiden Ansatze unumganglich zu sein scheint."

Book 150

Lineare Algebra

by R. Remmert and E. Oeljeklaus

Published 9 September 1974
3a, mein l}teunb, e5 finb bie stlange U5 ber liingft tJerfc onnen %raum eit; \J1ur bali oft mob erne %riller @aufefn burc ben often @runbton. Sj. Sjeine, tta %roH CstalJut XXVIII) O. Die stiirmische Entwicklung der Mathematik in den letzten Jahrzehnten hat auch vor den Horsalen der Anfangssemester nicht haltgemacht. Galt es in den dreiBiger Jahren noch als revolutionar, Vektorraume in den Grundvorlesungen iiber Analytische Geometrie systematisch zu behandeln, so verstarken sich in jiingster Zeit die Tendenzen, von 'vornherein auch Moduln iiber kommutativen Ringen in die. Begriffsbildungen einzubeziehen, soweit es in Analogie zu Vektorraumen ohne Miihe moglich ist. Fiir diese Entwicklung, an der sich auch das vorliegende Buch orientiert, gibt es eine Reihe inhaltlicher Griinde. So gewinnt man in eleganter und einpragsamer Weise Struktursatze iiber Endomorphismen von Vektorraumen, wenn man den Grundkorper K zum Polynomring K[X] erweitert, den Vektorraum zum K [X]-Modul macht und Satze aus der Modul- theorie (iiber Hauptidealringen) heranzieht. Nicht zuletzt erweist es sich auch in der Determinantentheorie als zweckmaBig, bei der Behandlung des charakteristischen Polynoms den Determinanten- begriffiiber dem Ring K[X] zur Verfugung zu haben. Dieses Taschenbuch ist der erste Teil einer zweibandigen Dar- stellung der Linearen Algebra; es ist aus Vorlesungen entstanden, die der altere Autor vor lahren an den Universitaten Erlangen und Gottingen gehalten hat. 1m vorliegenden Band werden die Grund- lagen der Theorie der Vektorraume und Moduln nebst der zu- gehorigen Abbildungstheorie entwickelt. Die Vektorraumtheorie ist als Spezialfall in der Modultheorie enthalten, sie wird aber nichts- destoweniger auch gesondert und eigenstiindig dargestellt.