Advances in Chemical Physics
1 primary work
Book 198
New Methods in Computational Quantum Mechanics, Volume 93
Published 8 July 1996
The use of quantum chemistry for the quantitative prediction of molecular properties has long been frustrated by the technical difficulty of carrying out the needed computations. In the last decade there have been substantial advances in the formalism and computer hardware needed to carry out accurate calculations of molecular properties efficiently. These advances have been sufficient to make quantum chemical calculations a reliable tool for the quantitative interpretation of chemical phenomena and a guide to laboratory experiments. However, the success of these recent developments in computational quantum chemistry is not well known outside the community of practitioners. In order to make the larger community of chemical physicists aware of the current state of the subject, this self-contained volume of Advances in Chemical Physics surveys a number of the recent accomplishments in computational quantum chemistry. This stand-alone work presents the cutting edge of research in computational quantum mechanics.
Supplemented with more than 150 illustrations, it provides evaluations of a broad range of methods, including: Quantum Monte Carlo methods in chemistry Monte Carlo methods for real-time path integration The Redfield equation in condensed-phase quantum dynamics Path-integral centroid methods in quantum statistical mechanics and dynamics Multiconfigurational perturbation theory-applications in electronic spectroscopy Electronic structure calculations for molecules containing transition metals And more Contributors to New Methods in Computational Quantum Mechanics KERSTIN ANDERSSON, Department of Theoretical Chemistry, Chemical Center, Sweden DAVID M. CEPERLEY, National Center for Supercomputing Applications and Department of Physics, University of Illinois at Urbana-Champaign, Illinois MICHAEL A. COLLINS, Research School of Chemistry, Australian National University, Canberra, Australia REINHOLD EGGER, Fakultat fur Physik, Universitat Freiburg, Freiburg, Germany ANTHONY K. FELTS, Department of Chemistry, Columbia University, New York RICHARD A. FRIESNER, Department of Chemistry, Columbia University, New York MARKUS P.
FULSCHER, Department of Theoretical Chemistry, Chemical Center, Sweden K. M. HO, Ames Laboratory and Department of Physics, Iowa State University, Ames, Iowa C. H. MAK, Department of Chemistry, University of Southern California, Los Angeles, California PER-AKE Malmqvist, Department of Theoretical Chemistry, Chemical Center, Sweden MANUELA MERCHan, Departamento de Quimica Fisica, Universitat de Valencia, Spain LUBOS MITAS, National Center for Supercomputing Applications and Materials Research Laboratory, University of Illinois at Urbana-Champaign, Illinois STEFANO OSS, Dipartimento di Fisica, Universita di Trento and Istituto Nazionale di Fisica della Materia, Unita di Trento, Italy KRISTINE PIERLOOT, Department of Chemistry, University of Leuven, Belgium W. THOMAS POLLARD, Department of Chemistry, Columbia University, New York BJORN O. ROOS, Department of Theoretical Chemistry, Chemical Center, Sweden LUIS SERRANO-ANDRES, Department of Theoretical Chemistry, Chemical Center, Sweden PER E. M. SIEGBAHN, Department of Physics, University of Stockholm, Stockholm, Sweden WALTER THIEL, Institut fur Organische Chemie, Universitat Zurich, Zurich, Switzerland GREGORY A.
VOTH, Department of Chemistry, University of Pennsylvania, Pennsylvania C. Z. Wang, Ames Laboratory and Department of Physics, Iowa State University, Ames, Iowa
Supplemented with more than 150 illustrations, it provides evaluations of a broad range of methods, including: Quantum Monte Carlo methods in chemistry Monte Carlo methods for real-time path integration The Redfield equation in condensed-phase quantum dynamics Path-integral centroid methods in quantum statistical mechanics and dynamics Multiconfigurational perturbation theory-applications in electronic spectroscopy Electronic structure calculations for molecules containing transition metals And more Contributors to New Methods in Computational Quantum Mechanics KERSTIN ANDERSSON, Department of Theoretical Chemistry, Chemical Center, Sweden DAVID M. CEPERLEY, National Center for Supercomputing Applications and Department of Physics, University of Illinois at Urbana-Champaign, Illinois MICHAEL A. COLLINS, Research School of Chemistry, Australian National University, Canberra, Australia REINHOLD EGGER, Fakultat fur Physik, Universitat Freiburg, Freiburg, Germany ANTHONY K. FELTS, Department of Chemistry, Columbia University, New York RICHARD A. FRIESNER, Department of Chemistry, Columbia University, New York MARKUS P.
FULSCHER, Department of Theoretical Chemistry, Chemical Center, Sweden K. M. HO, Ames Laboratory and Department of Physics, Iowa State University, Ames, Iowa C. H. MAK, Department of Chemistry, University of Southern California, Los Angeles, California PER-AKE Malmqvist, Department of Theoretical Chemistry, Chemical Center, Sweden MANUELA MERCHan, Departamento de Quimica Fisica, Universitat de Valencia, Spain LUBOS MITAS, National Center for Supercomputing Applications and Materials Research Laboratory, University of Illinois at Urbana-Champaign, Illinois STEFANO OSS, Dipartimento di Fisica, Universita di Trento and Istituto Nazionale di Fisica della Materia, Unita di Trento, Italy KRISTINE PIERLOOT, Department of Chemistry, University of Leuven, Belgium W. THOMAS POLLARD, Department of Chemistry, Columbia University, New York BJORN O. ROOS, Department of Theoretical Chemistry, Chemical Center, Sweden LUIS SERRANO-ANDRES, Department of Theoretical Chemistry, Chemical Center, Sweden PER E. M. SIEGBAHN, Department of Physics, University of Stockholm, Stockholm, Sweden WALTER THIEL, Institut fur Organische Chemie, Universitat Zurich, Zurich, Switzerland GREGORY A.
VOTH, Department of Chemistry, University of Pennsylvania, Pennsylvania C. Z. Wang, Ames Laboratory and Department of Physics, Iowa State University, Ames, Iowa