This Springer Brief investigates spectrum sharing with limited channel feedback in various cognitive radio systems, such as point-to-point, broadcast scheduling and ad-hoc networks. The design aim is to optimally allocate the secondary resources to improve the throughput of secondary users while maintaining a certain quality of service for primary users. The analytical results of optimal resource allocation are derived via optimization theory and are verified by the numerical results. The results demonstrate the secondary performance is significantly improved by limited feedback and is further improved by more feedback bits, more secondary receivers and more primary side information.

This SpringerBrief presents interference coordination techniques for future 5G cellular networks. Starting with an overview of existing interference management techniques, it focuses on practical interference coordination schemes based on beamforming and user scheduling. The proposed schemes aim to deal with the inter-cell interference in multi-cell MIMO networks, cross-tier interference in device-to-device communications underlaying cellular network, and inter-network interference in cognitive radio networks. The performances of the proposed schemes are evaluated both analytically and numerically in terms of several performance parameters, including the sum rate, multiplexing gain, and outage probability of the networks. The results show that the proposed schemes can significantly reduce the effect of interference and improve the quality of service of the networks.

Interference Coordination for 5G Cellular Networks is suitable for researchers and advanced students interested in interference coordination or 5G cellular networks.


This SpringerBrief investigates advanced sensing techniques to detect and estimate the primary receiver for cognitive radio systems. Along with a comprehensive overview of existing spectrum sensing techniques, this brief focuses on the design of new signal processing techniques, including the region-based sensing, jamming-based probing, and relay-based probing. The proposed sensing techniques aim to detect the nearby primary receiver and estimate the cross-channel gain between the cognitive transmitter and primary receiver. The performance of the proposed algorithms is evaluated by simulations in terms of several performance parameters, including detection probability, interference probability, and estimation error. The results show that the proposed sensing techniques can effectively sense the primary receiver and improve the cognitive transmission throughput. Researchers and postgraduate students in electrical engineering will find this an exceptional resource.