Book 78

Theory of Function Spaces

by Hans Triebel

Published 1 January 1983
The book deals with the two scales Bsp,q and Fsp,q of spaces of distributions, where ‑∞n in the framework of Fourier analysis, which is based on the technique of maximal functions, Fourier multipliers and interpolation assertions. These topics are treated in Chapter 2, which is the heart of the book. Chapter 3 deals with corresponding spaces on smooth bounded domains in Rn. These results are applied in Chapter 4 in order to study general boundary value problems for regular elliptic differential operators in the above spaces. Shorter Chapters (1 and 5-10) are concerned with: Entire analytic functions, ultra-distributions, weighted spaces, periodic spaces, degenerate elliptic differential equations.

Book 84

s s T h is b o ok de als w ith the the o ry of func tion s p ac e s of t y p e B and F as it s t ands pq pq at the end of the eigh ties. These t w o scales of spaces co v er man y w ell- kno w n s paces of functions a nd distributions suc h as H.. olde r-Zy gm und s pac e s , Sob ole v s pac e s , fra- tional Sob o lev s paces (prev ious ly a ls o o ft en referred to a s Bes s e l-p o ten tial s paces ), Be s o v s pac e s , i nhom oge ne ous Hardy s p ac e s , s pac e s of BM O-t y p e and l o c al appro - imation s paces whic h are clos ely c onnected with Morrey-Campanato s paces.

Book 97

The Structure of Functions

by Hans Triebel

Published 1 August 2001

This book deals with the constructive Weierstrassian approach to the theory of function spaces and various applications. The first chapter is devoted to a detailed study of quarkonial (subatomic) decompositions of functions and distributions on euclidean spaces, domains, manifolds and fractals. This approach combines the advantages of atomic and wavelet representations. It paves the way to sharp inequalities and embeddings in function spaces, spectral theory of fractal elliptic operators, and a regularity theory of some semi-linear equations.

The book is self-contained, although some parts may be considered as a continuation of the author's book Fractals and Spectra. It is directed to mathematicians and (theoretical) physicists interested in the topics indicated and, in particular, how they are interrelated.

- - -

The book under review can be regarded as a continuation of [his book on "Fractals and spectra", 1997] (...) There are many sections named: comments, preparations, motivations, discussions and so on. These parts of the book seem to be very interesting and valuable. They help the reader to deal with the main course.
(Mathematical Reviews)


Book 100

Theory of Function Spaces III

by Hans Triebel

Published 1 January 2006

This volume presents the recent theory of function spaces, paying special attention to some recent developments related to neighboring areas such as numerics, signal processing, and fractal analysis. Local building blocks, in particular (non-smooth) atoms, quarks, wavelet bases and wavelet frames are considered in detail and applied to diverse problems, including a local smoothness theory, spaces on Lipschitz domains, and fractal analysis.


Book 107

Theory of Function Spaces IV

by Hans Triebel

Published 24 January 2020
This book is the continuation of the "Theory of Function Spaces" trilogy, published by the same author in this series and now part of classic literature in the area of function spaces. It can be regarded as a supplement to these volumes and as an accompanying book to the textbook by D.D. Haroske and the author "Distributions, Sobolev spaces, elliptic equations".

v. 91

Fractals and Spectra

by Hans Triebel

Published 1 January 1997
This book deals with the symbiotic relationship between the theory of function spaces, fractal geometry, and spectral theory of (fractal) pseudodifferential operators as it has emerged quite recently. Atomic and quarkonial (subatomic) decompositions in scalar and vector valued function spaces on the euclidean n-space pave the way to study properties (compact embeddings, entropy numbers) of function spaces on and of fractals. On this basis, distributions of eigenvalues of fractal (pseudo)differential operators are investigated. Diverse versions of fractal drums are played. Most of the presented material is published here for the first time. The book is directed to mathematicians interested in functional analysis, the theory of function spaces, fractal geometry, partial and pseudodifferential operators, and, in particular, in how these domains are interrelated.