This book introduces the reader to some of the basic concepts, results and applications of biorthogonal systems in infinite dimensional geometry of Banach spaces, and in topology and nonlinear analysis in Banach spaces. It achieves this in a manner accessible to graduate students and researchers who have a foundation in Banach space theory. The authors have included numerous exercises, as well as open problems that point to possible directions of research.


This book introduces the basic principles of functional analysis and areas of Banach space theory that are close to nonlinear analysis and topology. The text can be used in graduate courses or for independent study. It includes a large number of exercises of different levels of difficulty, accompanied by hints.


Banach spaces provide a framework for linear and nonlinear functional analysis, operator theory, abstract analysis, probability, optimization and other branches of mathematics. This book introduces the reader to linear functional analysis and to related parts of infinite-dimensional Banach space theory.
Key Features:
- Develops classical theory, including weak topologies, locally convex space, Schauder bases and compact operator theory
- Covers Radon-Nikodym property, finite-dimensional spaces and local theory on tensor products
- Contains sections on uniform homeomorphisms and non-linear theory, Rosenthal's L1 theorem, fixed points, and more
- Includes information about further topics and directions of research and some open problems at the end of each chapter
- Provides numerous exercises for practice
The text is suitable for graduate courses or for independent study. Prerequisites include basic courses in calculus and linear. Researchers in functional analysis will also benefit for this book as it can serve as a reference book.