Concrete is the most used man-made material in the world since its invention. The widespread use of this material has led to continuous developments such as ultra-high strength concrete and self-compacting concrete. Recycled Aggregate in Concrete: Use of Industrial, Construction and Demolition Waste focuses on the recent development which the use of various types of recycled waste materials as aggregate in the production of various types of concrete.

By drawing together information and data from various fields and sources, Recycled Aggregate in Concrete: Use of Industrial, Construction and Demolition Waste provides full coverage of this subject. Divided into two parts, a compilation of varied literature data related to the use of various types of industrial waste as aggregates in concrete is followed by a discussion of the use of construction and demolition waste as aggregate in concrete. The properties of the aggregates and their effect on various concrete properties are presented, and the quantitative procedure to estimate the properties of concrete containing construction and demolition waste as aggregates is explained. Current codes and practices developed in various countries to use construction and demolition waste as aggregates in concrete and issues related to the sustainability of cement and concrete production are also discussed.

The comprehensive information presented in Recycled Aggregate in Concrete: Use of Industrial, Construction and Demolition Waste will be helpful to graduate students, researchers and concrete technologists. The collected data will also be an essential reference for practicing engineers who face problems concerning the use of these materials in concrete production.


Presenting an analysis of different approaches for predicting the service life of buildings, this monograph discusses various statistical tools and mathematical models, some of which have rarely been applied to the field. It explores methods including deterministic, factorial, stochastic and computational models and applies these to facade claddings. The models allow (i) identification of patterns of degradation, (ii) estimation of service life, (iii) analysis of loss of performance using probability functions, and (iv) estimation of service life using a probability distribution. The final chapter discusses the differences between the different methodologies and their advantages and limitations. The authors also argue that a better understanding of the service life of buildings results in more efficient building maintenance and reduced environmental costs. It not only provides an invaluable resource to students, researchers and industry professionals interested in service life prediction and sustainable construction, but is also of interest to environmental and materials scientists.