This book gives a comprehensive treatment of the singularities that appear in the minimal model program and in the moduli problem for varieties. The study of these singularities and the development of Mori's program have been deeply intertwined. Early work on minimal models relied on detailed study of terminal and canonical singularities but many later results on log terminal singularities were obtained as consequences of the minimal model program. Recent work on the abundance conjecture and on moduli of varieties of general type relies on subtle properties of log canonical singularities and conversely, the sharpest theorems about these singularities use newly developed special cases of the abundance problem. This book untangles these interwoven threads, presenting a self-contained and complete theory of these singularities, including many previously unpublished results.

One of the major discoveries of the last two decades of the twentieth century in algebraic geometry is the realization that the theory of minimal models of surfaces can be generalized to higher dimensional varieties. This generalization, called the minimal model program or Mori's program, has developed into a powerful tool with applications to diverse questions in algebraic geometry and beyond. This book provides the a comprehensive introduction to the circle of ideas developed around the program, the prerequisites being only a basic knowledge of algebraic geometry. It will be of great interest to graduate students and researchers working in algebraic geometry and related fields.