This book focuses on the design of a Mega-Gray (a standard unit of total ionizing radiation) radiation-tolerant ps-resolution time-to-digital converter (TDC) for a light detection and ranging (LIDAR) system used in a gamma-radiation environment. Several radiation-hardened-by-design (RHBD) techniques are demonstrated throughout the design of the TDC and other circuit techniques to improve the TDC's resolution in a harsh environment are also investigated. Readers can learn from scratch how to design a radiation-tolerant IC. Information regarding radiation effects, radiation-hardened design techniques and measurements are organized in such a way that readers can easily gain a thorough understanding of the topic. Readers will also learn the design theory behind the newly proposed delta-sigma TDC. Readers can quickly acquire knowledge about the design of radiation-hardened bandgap voltage references and low-jitter relaxation oscillators, which are introduced in the content from a designer's perspective.

* Discusses important aspects of radiation-tolerant analog IC design, including realistic applications and radiation effects on ICs;

* Demonstrates radiation-hardened-by-design techniques through a design-test-radiation assessment practice;

* Describes a new type of Time-to-Digital (TDC) converter designed for radiation-tolerant application;

* Explains the design and measurement of all functional blocks (e.g., bandgap reference, relaxation oscillator) in the TDC.


CMOS DC-DC Converters aims to provide a comprehensive dissertation on the matter of monolithic inductive Direct-Current to Direct-Current (DC-DC) converters. For this purpose seven chapters are defined which will allow the designer to gain specific knowledge on the design and implementation of monolithic inductive DC-DC converters, starting from the very basics.

Environmental electromagnetic pollution has drastically increased over the last decades. The omnipresence of communication systems, various electronic appliances and the use of ever increasing frequencies, all contribute to a noisy electromagnetic environment which acts detrimentally on sensitive electronic equipment. Integrated circuits must be able to operate satisfactorily while cohabiting harmoniously in the same appliance, and not generate intolerable levels of electromagnetic emission, while maintaining a sound immunity to potential electromagnetic disturbances: analog integrated circuits are in particular more easily disturbed than their digital counterparts, since they don't have the benefit of dealing with predefined levels ensuring an innate immunity to disturbances. The objective of the research domain presented in EMC of Analog Integrated Circuits is to improve the electromagnetic immunity of considered analog integrated circuits, so that they start to fail at relevantly higher conduction levels than before.


This book describes the design of optical receivers that use the most economical integration technology, while enabling performance that is typically only found in very expensive devices. To achieve this, all necessary functionality, from light detection to digital output, is integrated on a single piece of silicon. All building blocks are thoroughly discussed, including photodiodes, transimpedance amplifiers, equalizers and post amplifiers.

Today's booming expanse of personal wireless radio communications is a rich source of new challenges for the designer of the underlying enabling te- nologies. Personal communication networks are designed from a fundam- tally different perspective than broadcast service networks, such as radio and television. While the focus of the latter is on reliability and user comfort, the emphasis of personal communication devices is on throughput and mobility. However, because the wireless channel is a shared transmission medium with only very limited resources, a trade-off has to be made between mobility and the number of simultaneous users in a con?ned geographical area. Accord- 1 ing to Shannon's theorem on channel capacity, the overall data throughput of a communication channel bene?ts from either a linear increase of the tra- mission bandwidth, or an (equivalent) exponential increase in signal quality. Consequently, it is more bene?cial to think in terms of channel bandwidth than it is to pursue a high transmission power. All the above elements are embodied in the concept of spatial ef?ciency. By describing the throughput of a system 2 in terms of bits/s/Hz/m , spatial ef?ciency takes into account that the use of a low transmission power reduces the operational range of a radio transmission, and as such enables a higher reuse rate of the same frequency spectrum.

This book fits in the quest for highly efficient fully integrated xDSL modems for central office applications. It presents a summary of research at one of Europe's most famous analog design research groups over a five year period. The book focuses on the line driver, the most demanding building block of the xDSL modem for lowering power.

The book covers the total design flow of monolithic CMOS high voltage circuits. It is essential reading for analog design engineers.


This book tackles both high efficiency and high linearity power amplifier (PA) design in low-voltage CMOS. With its emphasis on theory, design and implementation, the book offers a guide for those actively involved in the design of fully integrated CMOS wireless transceivers. Offering mathematical background, as well as intuitive insight, the book is essential reading for RF design engineers and researchers and is also suitable as a text book.


This book opens with the basics of the design of opto-electronic interface circuits. The text continues with an in-depth analysis of the photodiode, transimpedance amplifier (TIA) and limiting amplifier (LA). To thoroughly describe light detection mechanisms in silicon, first a one-dimensional and second a two-dimensional model is developed. All material is experimentally verified with several CMOS implementations, with ultimately a fully integrated Gbit/s optical receiver front-end including photodiode, TIA and LA.


This book describes new tools for front end analog designers, starting with global variation-aware sizing, and extending to novel variation-aware topology design. The tools aid design through automation, but more importantly, they also aid designer insight through automation. We now describe four design tasks, each more general than the previous, and how this book contributes design aids and insight aids to each. The ?rst designer task targeted is global robust sizing. This task is supported by a design tool that does automated, globally reliable, variation-aware s- ing (SANGRIA),and an insight-aiding tool that extracts designer-interpretable whitebox models that relate sizings to circuit performance (CAFFEINE). SANGRIA searches on several levels of problem dif?culty simultaneously, from lower cheap-to-evaluate "exploration" layers to higher full-evaluation "exploitation" layers (structural homotopy). SANGRIAmakes maximal use of circuit simulations by performing scalable data mining on simulation results to choose new candidate designs. CAFFEINE accomplishes its task by tre- ing function induction as a tree-search problem. It constrains its tree search space via a canonical-functional-form grammar, and searches the space with grammatically constrained genetic programming. The second designer task is topology selection/topology design. Topology selection tools must consider a broad variety of topologies such that an app- priate topology is selected, must easily adapt to new semiconductor process nodes, and readily incorporate new topologies. Topology design tools must allow designers to creatively explore new topology ideas as rapidly as possible.

This book provides insight into organic electronics technology and in analog circuit techniques that can be used to increase the performance of both analog and digital organic circuits. It explores the domain of organic electronics technology for analog circuit applications, specifically smart sensor systems. It focuses on all the building blocks in the data path of an organic sensor system between the sensor and the digital processing block. Sensors, amplifiers, analog-to-digital converters and DC-DC converters are discussed in detail. Coverage includes circuit techniques, circuit implementation, design decisions and measurement results of the building blocks described.


This book provides a detailed analysis of all aspects of capacitive DC-DC converter design: topology selection, control loop design and noise mitigation. Readers will benefit from the authors' systematic overview that starts from the ground up, in-depth circuit analysis and a thorough review of recently proposed techniques and design methodologies. Not only design techniques are discussed, but also implementation in CMOS is shown, by pinpointing the technological opportunities of CMOS and demonstrating the implementation based on four state-of-the-art prototypes.


This book presents state-of-the-art techniques for radiation hardened high-resolution Time-to-Digital converters and low noise frequency synthesizers. Throughout the book, advanced degradation mechanisms and error sources are discussed and several ways to prevent such errors are presented. An overview of the prerequisite physics of nuclear interactions is given that has been compiled in an easy to understand chapter. The book is structured in a way that different hardening techniques and solutions are supported by theory and experimental data with their various tradeoffs.

  • Based on leading-edge research, conducted in collaboration between KU Leuven and CERN, the European Center for Nuclear Research
  • Describes in detail advanced techniques to harden circuits against ionizing radiation
  • Provides a practical way to learn and understand radiation effects in time-based circuits
  • Includes an introduction to the underlying physics, circuit design, and advanced techniques accompanied with experimental data


This book describes synergetic innovation opportunities offered by combining the field of power conversion with the field of integrated circuit (IC) design. The authors demonstrate how integrating circuits enables increased operation frequency, which can be exploited in power converters to reduce drastically the size of the discrete passive components. The authors introduce multiple power converter circuits, which are very compact as result of their high level of integration. First, the limits of high-power-density low-voltage monolithic switched-capacitor DC-DC conversion are investigated to enable on-chip power granularization. AC-DC conversion from the mains to a low voltage DC is discussed, enabling an efficient and compact, lower-power auxiliary power supply to take over the power delivery during the standby mode of mains-connected appliances, allowing the main power converter of these devices to be shut down fully.