Book 17

The already broad range of applications of ring theory has been enhanced in the eighties by the increasing interest in algebraic structures of considerable complexity, the so-called class of quantum groups. One of the fundamental properties of quantum groups is that they are modelled by associative coordinate rings possessing a canonical basis, which allows for the use of algorithmic structures based on Groebner bases to study them. This book develops these methods in a self-contained way, concentrating on an in-depth study of the notion of a vast class of non-commutative rings (encompassing most quantum groups), the so-called Poincare-Birkhoff-Witt rings. We include algorithms which treat essential aspects like ideals and (bi)modules, the calculation of homological dimension and of the Gelfand-Kirillov dimension, the Hilbert-Samuel polynomial, primality tests for prime ideals, etc.

Book 20

This book deals with combinatorial aspects of epistasis, a notion that existed for years in genetics and appeared in the ?eld of evolutionary algorithms in the early 1990s. Even thoughthe?rst chapterputsepistasisintheperspective ofevolutionary algorithms and arti?cial intelligence, and applications occasionally pop up in other chapters, thisbookisessentiallyaboutmathematics, aboutcombinatorialtechniques to compute in an e?cient and mathematically elegant way what will be de?ned as normalized epistasis. Some of the material in this book ?nds its origin in the PhD theses of Hugo Van Hove [97] and Dominique Suys [95]. The sixth chapter also contains material that appeared in the dissertation of Luk Schoofs [84]. Together with that of M. Teresa Iglesias [36], these dissertations form the backbone of a decade of mathematical ventures in the world of epistasis. The authors wish to acknowledge support from the Flemish Fund of Scienti?c - search (FWO-Vlaanderen) and of the Xunta de Galicia.
They also wish to explicitly mentiontheintellectualandmoralsupporttheyreceivedthroughoutthepreparation of this work from their family and their colleagues Emilio Villanueva, Jose Mar'a Barja and Arnold Beckelheimer, as well as our local T T Xpert Jan Adriaenssens.