Book 34

Since The Theory of the Moiré Phenomenon was published it became the main reference book in its field. It provided for the first time a complete, unified and coherent theoretical approach for the explanation of the moiré phenomenon, starting from the basics of the theory, but also going in depth into more advanced research results. However, it is clear that a single book cannnot cover the full breadth of such a vast subject, and indeed, this original volume admittently concentrated on only some aspects of the moiré theory, while other interesting topics had to be left out. Perhaps the most important area that remained beyond the scope of the original book consists of the moiré effects that occur between correlated random or aperiodic structures. These moiré effects are known as Glass patterns, after Leon Glass who described them in the late 1960s. However, this branch of the moiré theory remained for many years less widely known and less understood than its periodic or repetitive counterpart: Less widely known because moiré effects between aperiodic or random structures are less frequently encountered in everyday’s life, and less understood because these effects did not easily lend themselves to the same mathematical methods that so nicely explained the classical moiré effects between periodic or repetitive structures.

Book 43

The discrete Fourier transform (DFT) is an extremely useful tool that finds application in many different disciplines. However, its use requires caution. The aim of this book is to explain the DFT and its various artifacts and pitfalls and to show how to avoid these (whenever possible), or at least how to recognize them in order to avoid misinterpretations. This concentrated treatment of the DFT artifacts and pitfalls in a single volume is, indeed, new, and it makes this book a valuable source of information for the widest possible range of DFT users. Special attention is given to the one and two dimensional cases due to their particular importance, but the discussion covers the general multidimensional case, too. The book favours a pictorial, intuitive approach which is supported by mathematics, and the discussion is accompanied by a large number of figures and illustrative examples, some of which are visually attractive and even spectacular.

 

Mastering the Discrete Fourier Transform in One, Two or Several Dimensions is intended for scientists, engineers, students and any readers who wish to widen their knowledge of the DFT and its practical use. This book will also be very useful for ‘naive’ users from various scientific or technical disciplines who have to use the DFT for their respective applications. The prerequisite mathematical background is limited to an elementary familiarity with calculus and with the continuous and discrete Fourier theory.