Book 37

Using a singular perturbation approach, this is a systematic treatment of those systems that naturally arise in queuing theory, control and optimisation, and manufacturing, gathering a number of ideas which were previously scattered throughout the literature. The book presents results on asymptotic expansions of the corresponding probability distributions, functional occupation measures, exponential upper bounds, and asymptotic normality. To bridge the gap between theory and applications, a large portion of the book is devoted to various applications, thus reducing the dimensionality for problems under Markovian disturbances and providing tools for dealing with large-scale and complex real-world situations. Much of this stems from the authors'recent research, presenting results which have not appeared elsewhere. An important reference for researchers in applied mathematics, probability and stochastic processes, operations research, control theory, and optimisation.

Book 54

This book articulates a new theory that shows that hierarchical decision making can in fact lead to a near optimization of system goals. The material in the book cuts across disciplines. It will appeal to graduate students and researchers in applied mathematics, operations management, operations research, and system and control theory.


Book 55

Discrete-Time Markov Chains

by George Yin and Qing Zhang

Published 1 October 2004
This book focuses on two-time-scale Markov chains in discrete time. Our motivation stems from existing and emerging applications in optimization and control of complex systems in manufacturing, wireless communication, and ?nancial engineering. Much of our e?ort in this book is devoted to designing system models arising from various applications, analyzing them via analytic and probabilistic techniques, and developing feasible compu- tionalschemes. Ourmainconcernistoreducetheinherentsystemcompl- ity. Although each of the applications has its own distinct characteristics, all of them are closely related through the modeling of uncertainty due to jump or switching random processes. Oneofthesalientfeaturesofthisbookistheuseofmulti-timescalesin Markovprocessesandtheirapplications. Intuitively,notallpartsorcom- nents of a large-scale system evolve at the same rate. Some of them change rapidly and others vary slowly. The di?erent rates of variations allow us to reduce complexity via decomposition and aggregation. It would be ideal if we could divide a large system into its smallest irreducible subsystems completely separable from one another and treat each subsystem indep- dently.
However, this is often infeasible in reality due to various physical constraints and other considerations. Thus, we have to deal with situations in which the systems are only nearly decomposable in the sense that there are weak links among the irreducible subsystems, which dictate the oc- sional regime changes of the system. An e?ective way to treat such near decomposability is time-scale separation. That is, we set up the systems as if there were two time scales, fast vs. slow. xii Preface Followingthetime-scaleseparation,weusesingularperturbationmeth- ology to treat the underlying systems.