World Scientific Series on Nonlinear Science Series A
2 primary works
Book 21
Hopf Bifurcation Analysis: A Frequency Domain Approach
by Guanrong Chen and Jorge Luis Moiola
Published 1 April 1996
This book is devoted to the frequency domain approach, for both regular and degenerate Hopf bifurcation analyses. Besides showing that the time and frequency domain approaches are in fact equivalent, the fact that many significant results and computational formulas obtained in the studies of regular and degenerate Hopf bifurcations from the time domain approach can be translated and reformulated into the corresponding frequency domain setting, and be reconfirmed and rediscovered by using the frequency domain methods, is also explained. The description of how the frequency domain approach can be used to obtain several types of standard bifurcation conditions for general nonlinear dynamical systems is given as well as is demonstrated a very rich pictorial gallery of local bifurcation diagrams for nonlinear systems under simultaneous variations of several system parameters. In conjunction with this graphical analysis of local bifurcation diagrams, the defining and nondegeneracy conditions for several degenerate Hopf bifurcations is presented. With a great deal of algebraic computation, some higher-order harmonic balance approximation formulas are derived, for analyzing the dynamical behavior in small neighborhoods of certain types of degenerate Hopf bifurcations that involve multiple limit cycles and multiple limit points of periodic solutions. In addition, applications in chemical, mechanical and electrical engineering as well as in biology are discussed. This book is designed and written in a style of research monographs rather than classroom textbooks, so that the most recent contributions to the field can be included with references.
Book 96
Frequency-domain Approach To Hopf Bifurcation Analysis: Continuous Time-delayed Systems
by Franco Sebastian Gentile, Guanrong Chen, and Jorge Luis Moiola
Published 31 October 2019
This book is devoted to the study of an effective frequency-domain approach, based on systems control theory, to compute and analyze several types of standard bifurcation conditions for general continuous-time nonlinear dynamical systems. A very rich pictorial gallery of local bifurcation diagrams for such nonlinear systems under simultaneous variations of several system parameters is presented. Some higher-order harmonic balance approximation formulas are derived for analyzing the oscillatory dynamics in small neighborhoods of certain types of Hopf and degenerate Hopf bifurcations.The frequency-domain approach is then extended to the large class of delay-differential equations, where the time delays can be either discrete or distributed. For the case of discrete delays, two alternatives are presented, depending on the structure of the underlying dynamical system, where the more general setting is then extended to the case of distributed time-delayed systems. Some representative examples in engineering and biology are discussed.