Stochastic Processes, Estimation, and Control (Advances in Design and Control)
by Jason L. Speyer and Walter H. Chung
Uncertainty and risk are integral to engineering because real systems have inherent ambiguities that arise naturally or due to our inability to model complex physics. The authors discuss probability theory, stochastic processes, estimation, and stochastic control strategies and show how probability can be used to model uncertainty in control and estimation problems. The material is practical and rich in research opportunities. The authors provide a comprehensive treatment of stochastic systems...
Introduction to Ergodic Theory (MN-18), Volume 18 (Mathematical Notes)
by Iakov Grigorevich Sinai
Based on lectures in Erevan, this exposition of ergodic theory contains a rich collection of examples well chosen to introduce the reader to the main themes of the subject. Topics discussed include existence of invariant measures, geodesic flows on Riemannian manifolds, ergodic theory of an ideal gas, and entropy of dynamical systems.
This book, suitable for advanced undergraduate, graduate and research courses in such subjects as statistics, applied mathematics, operation research, computer science, different branches of engineering, business and management, economics and life sciences etc., is aimed between elementary probability texts and advanced works on stochastic processes. What distinguishes the text is the illustration of the theorems by examples and applications.
Featuring previously unpublished results, Semi-Markov Models: Control of Restorable Systems with Latent Failures describes valuable methodology which can be used by readers to build mathematical models of a wide class of systems for various applications. In particular, this information can be applied to build models of reliability, queuing systems, and technical control. Beginning with a brief introduction to the area, the book covers semi-Markov models for different control strategies in one-...
Mathematical Modeling and Computation of Real-Time Problems
This book covers an interdisciplinary approach for understanding mathematical modeling by offering a collection of models, solved problems related to the models, the methodologies employed, and the results using projects and case studies with insight into the operation of substantial real-time systems. The book covers a broad scope in the areas of statistical science, probability, stochastic processes, fluid dynamics, supply chain, optimization, and applications. It discusses advanced topics an...
Introduction to Stochastic Integration (Probability and Its Applications) (Modern Birkhauser Classics)
by Kai L. Chung and Ruth J. Williams
This is a substantial expansion of the first edition. The last chapter on stochastic differential equations is entirely new, as is the longish section 9.4 on the Cameron-Martin-Girsanov formula. Illustrative examples in Chapter 10 include the warhorses attached to the names of L. S. Ornstein, Uhlenbeck and Bessel, but also a novelty named after Black and Scholes. The Feynman-Kac-Schrooinger development (6.4) and the material on re flected Brownian motions (8.5) have been updated. Needless to sa...
Numerical Methods for Structured Markov Chains
by Dario Bini, G Latouche, and B Meini
Recent Advances in Stochastic Operations Research II
by Tadashi Dohi, Shunji Osaki, and Katsushige Sawaki
Weak convergence of stochastic processes is one of most important theories in probability theory. Not only probability experts but also more and more statisticians are interested in it. In the study of statistics and econometrics, some problems cannot be solved by the classical method. In this book, we will introduce some recent development of modern weak convergence theory to overcome defects of classical theory.
Mathematical Methods in the Theory of Queuing (Dover Books on Mathematics)
by A. Khinchin
Serving as the foundation for a one-semester course in stochastic processes for students familiar with elementary probability theory and calculus, Introduction to Stochastic Modeling, Fourth Edition, bridges the gap between basic probability and an intermediate level course in stochastic processes. The objectives of the text are to introduce students to the standard concepts and methods of stochastic modeling, to illustrate the rich diversity of applications of stochastic processes in the applie...
Probability, Statistics, and Queueing Theory (Computer Science and Scientific Computing)
by Arnold O. Allen
This is a textbook on applied probability and statistics with computer science applications for students at the upper undergraduate level. It may also be used as a self study book for the practicing computer science professional. The successful first edition of this book proved extremely useful to students who need to use probability, statistics and queueing theory to solve problems in other fields, such as engineering, physics, operations research, and management science. The book has also been...
The Analysis of Stochastic Processes Using Glim (Lecture Notes in Statistics, #72)
by James K. Lindsey
The aim of this book is to present a survey of the many ways in which the statistical package GLIM may be used to model and analyze stochastic processes. Its emphasis is on using GLIM interactively to apply statistical techniques, and examples are drawn from a wide range of applications including medicine, biology, and the social sciences. It is based on the author's many years of teaching courses along these lines to both undergraduate and graduate students. The author assumes that readers have...
Rigorous mathematical finance relies strongly on two additional fields: optimal stopping and stochastic analysis. This book is the first one which presents not only main results in the mathematical finance but also these 'related topics' with all proofs and in a self-contained form. The book treats both discrete and continuous time mathematical finance. Some topics, such as Israeli (game) contingent claims, and several proofs have not appeared before in a self-contained book form. The book conta...
Environmental Data Analysis with MatLab is a reference work designed to teach students and researchers the basics of data analysis in the environmental sciences using MatLab, and more specifically how to analyze data sets in carefully chosen, realistic scenarios. Although written in a self-contained way, the text is supplemented with data sets and MatLab scripts that can be used as a data analysis tutorial, available at the author's website: http://www.ldeo.columbia.edu/users/menke/edawm/index.h...
Markov processes are used to model systems with limited memory. They are used in many areas including communications systems, transportation networks, image segmentation and analysis, biological systems and DNA sequence analysis, random atomic motion and diffusion in physics, social mobility, population studies, epidemiology, animal and insect migration, queueing systems, resource management, dams, financial engineering, actuarial science, and decision systems. This book, which is written for...
Interest rate modeling and the pricing of related derivatives remain subjects of increasing importance in financial mathematics and risk management. This book provides an accessible introduction to these topics by a step-by-step presentation of concepts with a focus on explicit calculations. Each chapter is accompanied with exercises and their complete solutions, making the book suitable for advanced undergraduate and graduate level students.This second edition retains the main features of the f...
This book is a collective work by many leading scientists, analysts, mathematicians, and engineers who have been working at the front end of reliability science and engineering. The book covers conventional and contemporary topics in reliability science, all of which have seen extended research activities in recent years. The methods presented in this book are real-world examples that demonstrate improvements in essential reliability and availability for industrial equipment such as medical mag...
Probability Theory (Probability & Mathematical Statistics S.)
by R.G. Laha and Vijay K. Rohatgi
A comprehensive, self-contained, yet easily accessible presentation of basic concepts, examining measure-theoretic foundations as well as analytical tools. Covers classical as well as modern methods, with emphasis on the strong interrelationship between probability theory and mathematical analysis, and with special stress on the applications to statistics and analysis. Includes recent developments, numerous examples and remarks, and various end-of-chapter problems. Notes and comments at the end...