Since their inception, the Perspectives in Logic and Lecture Notes in Logic series have published seminal works by leading logicians. Many of the original books in the series have been unavailable for years, but they are now in print once again. Logicism, as put forward by Bertrand Russell, was predicated on a belief that all of mathematics can be deduced from a very small number of fundamental logical principles. In this volume, the twenty-third publication in the Lecture Notes in Logic series,...
Logic, Sets and Functions
by Professor of Philosophy Daniel Bonevac, Professor of Philosophy Robert C Koons, and Nicholas Asher
"There are many textbooks available for a so-called transition course from calculus to abstract mathematics. I have taught this course several times and always find it problematic. The Foundations of Mathematics (Stewart and Tall) is a horse of a different color. The writing is excellent and there is actually some useful mathematics. I definitely like this book."--The Bulletin of Mathematics Books
Lo Indispensable de La Matematica Formal
by Mario Francisco Rosales Gonzalez
Many of the modern variational problems in topology arise in different but overlapping fields of scientific study: mechanics, physics and mathematics. In this work, Professor Fomenko offers a concise and clean explanation of some of these problems (both solved and unsolved), using current methods and analytical topology. The author's skillful exposition gives an unusual motivation to the theory expounded, and his work is recommended reading for specialists and nonspecialists alike, involved in t...
Does the notion of part and whole have any application to classes? Lewis argues that it does, and that the smallest parts of any class are its one-membered "singleton" subclasses. That results in a reconception of set theory. The set-theoretical making of one out of many is just the composition of one whole out of many parts. But first, one singleton must be made out of its one member - this is the distinctively set-theoretical primitive operation. Thus set theory is entangled, with mereology: t...
Computable Set Theory (International Series of Monographs on Computer Science, #6)
by Domenico Cantone, etc., A Ferro, and E Omodeo
The authors describe computational techniques for deciding formulae in set theory. The eventual aim of such a work is to automate simple proofs over a wide range of mathematical areas. This volume reports on a successful series of investigations in one of the most important sub-domains: elementary set theory. This book is intended for computer scientists; set theorists; logicians.
Logic Colloquium '03 (Lecture Notes in Logic)
A compilation of papers presented at the 2003 European Summer Meeting of the Association for Symbolic Logic, Logic Colloquium '03 includes tutorials and research articles from some of the world's preeminent logicians. One article is a tutorial on finite model theory and query languages that lie between first order and second order logic. The other articles cover current research topics in all areas of mathematical logic, including Proof Theory, Set Theory, Model Theory, and Computability Theory,...
Universal Algebra (Chapman & Hall Pure and Applied Mathematics)
by Clifford Bergman
Starting with the most basic notions, Universal Algebra: Fundamentals and Selected Topics introduces all the key elements needed to read and understand current research in this field. Based on the author's two-semester course, the text prepares students for research work by providing a solid grounding in the fundamental constructions and concepts of universal algebra and by introducing a variety of recent research topics. The first part of the book focuses on core components, including subalgeb...
In recent years, many concepts in mathematics, engineering, computer science, and many other disciplines have been in a sense redefined to incorporate the notion of fuzziness. Designed for graduate students and research scholars, Fuzzy Topology imparts the concepts and recent developments related to the various properties of fuzzy topology. The author first addresses fundamental problems, such as the idea of a fuzzy point and its neighborhood structure and the theory of convergence. He then st...
Over the last 20 years, the theory of Borel equivalence relations and related topics have been very active areas of research in set theory and have important interactions with other fields of mathematics, like ergodic theory and topological dynamics, group theory, combinatorics, functional analysis, and model theory. The book presents, for the first time in mathematical literature, all major aspects of this theory and its applications.
This title offers a balanced and clearly explained treatment of infinity in mathematics. The concept of infinity has fascinated and confused mankind for centuries with concepts and ideas that cause even seasoned mathematicians to wonder. For instance, the idea that a set is infinite if it is not a finite set is an elementary concept that jolts our common sense and imagination. The "Mathematics of Infinity: A guide to Great Ideas" uniquely explores how we can manipulate these ideas when our commo...
Combinatorial Set Theory: Partition Relations for Cardinals
by A Hajnal and P Rado
Baumgartner:Axio Set Theo Conm 31 P
The book offers a good introduction to topology through solved exercises. It is mainly intended for undergraduate students. Most exercises are given with detailed solutions.
"Among the many expositions of Goedel's incompleteness theorems written for non-specialists, this book stands apart. With exceptional clarity, Franzen gives careful, non-technical explanations both of what those theorems say and, more importantly, what they do not. No other book aims, as his does, to address in detail the misunderstandings and abuses of the incompleteness theorems that are so rife in popular discussions of their significance. As an antidote to the many spurious appeals to incomp...
Introduction to the Theory of Sets (Dover Books on Mathematics)
by Joseph Breuer
The Elements of Advanced Mathematics (Textbooks in Mathematics)
by Steven G Krantz
Clearly written and easy to understand, The Elements of Advanced Mathematics covers logic, set theory, methods of proof, and axiomatic structures, providing an excellent grounding in analytical thinking. It facilitates the transition from elementary mathematics, generally characterized by problem-solving techniques, to advanced mathematics, characterized by theory, rigor, and proofs. This text clearly identifies and explains the components and methods of advanced mathematics. Each chapter contai...