Blow-Up in Nonlinear Equations
by Maxim Olegovich Korpusov and Alexey Vital Ovchinnikov
This book is about the phenomenon ofthe emergence of blow-up effectsin nonlinear equations.In particular it deals with theirapplicationsin modern mathematical physics.The bookmay also serve as a manual for researchers who want toget an overview ofthe main methods in nonlinear analysis.
2019 Monthly Planner 8.5 x 11 (Daily Planner 2018-2019, #5)
by Jada Correia
This is an introduction to methods for solving nonlinear partial differential equations (NLPDEs).After the introduction of several PDEs drawn from science and engineering, the reader is introduced to techniques used to obtain exact solutions of NPDEs. The chapters include the following topics: Compatibility, Differential Substitutions, Point and Contact Transformations, First Integrals, and Functional Separability. The reader is guided through these chapters and is provided with several detailed...
This book is devoted to the development of complex function theoretic methods in partial differential equations and to the study of analytic behaviour of solutions. It presents basic facts of the subject and includes recent results, emphasizing the method of integral operators and the method of differential operators. The first chapter gives a motivation for and the underlying ideas of, the later chapters. Chapters 2 to 7 give a detailed exposition of the basic concepts and fundamental theorems,...
The behavior of materials at the nanoscale is a key aspect of modern nanoscience and nanotechnology. This book presents rigorous mathematical techniques showing that some very useful phenomenological properties which can be observed at the nanoscale in many nonlinear reaction-diffusion processes can be simulated and justified mathematically by means of homogenization processes when a certain critical scale is used in the corresponding framework.
200 Worksheets - Word Names for 12 Digit Numbers (200 Days Math Number Name, #11)
by Kapoo Stem
This textbook is for the standard, one-semester, junior-senior course that often goes by the title "Elementary Partial Differential Equations" or "Boundary Value Problems". The audience consists of students in mathematics, engineering, and the sciences. The topics include derivations of some of the standard models of mathematical physics and methods for solving those equations on unbounded and bounded domains, and applications of PDE's to biology. The text differs from other texts in its brevity...
Differential Equations In No Time
by Mohamed Tarek Hussein Mohamed Ouda
Numerical Analysis of Wavelet Methods (Studies in Mathematics and Its Applications, #32)
by Albert Cohen and A. Cohen
Since their introduction in the 1980's, wavelets have become a powerful tool in mathematical analysis, with applications such as image compression, statistical estimation and numerical simulation of partial differential equations. One of their main attractive features is the ability to accurately represent fairly general functions with a small number of adaptively chosen wavelet coefficients, as well as to characterize the smoothness of such functions from the numerical behaviour of these coeffi...
'The numerical algorithms presented are written in pseudocode and based on MATLAB, a programming and numeric computing platform widely used in STEM fields. Thus, no formal training in computer science or knowledge of any specific programming language is needed to parse the algorithms. Summing up: Recommended.'CHOICEMany students come to numerical linear algebra from science and engineering seeking modern tools and an understanding of how the tools work and their limitations. Often their backgrou...
Partial Differential Equations in General Relativity (Oxford Graduate Texts in Mathematics)
by Alan D. Rendall
A graduate level text on a subject which brings together several areas of mathematics and physics: partial differential equations, differential geometry and general relativity. It explains the basics of the theory of partial differential equations in a form accessible to physicists and the basics of general relativity in a form accessible to mathematicians. In recent years the theory of partial differential equations has come to play an ever more important role in research on general relativity....
Introduction to the Theory of Linear Partial Differential Equations. Studies in Mathematics and Its Applications, Volume 14.
by Jacques Chazarain and Alain Piriou
Meshfree Methods for Partial Differential Equations IV. Lecture Notes in Computational Science and Engineering, Volume 65.
The aim of the Sino-Japan Conference of Young Mathematicians was to provide a forum for presenting and discussing recent trends and developments in differential equations and their applications, as well as to promote scientific exchanges and collaborations among young mathematicians both from China and Japan.The topics discussed in this proceedings include mean curvature flows, KAM theory, N-body problems, flows on Riemannian manifolds, hyperbolic systems, vortices, water waves, and reaction dif...
Modern Methods in Partial Differential Equations (Dover Books on Mathematics)
by Martin Schechter
Hodge Decomposition - A Method for Solving Boundary Value Problems (Lecture Notes in Mathematics, #1607)
by Gunter Schwarz
Hodge theory is a standard tool in characterizing differ- ential complexes and the topology of manifolds. This book is a study of the Hodge-Kodaira and related decompositions on manifolds with boundary under mainly analytic aspects. It aims at developing a method for solving boundary value problems. Analysing a Dirichlet form on the exterior algebra bundle allows to give a refined version of the classical decomposition results of Morrey. A projection technique leads to existence and regularity t...
Nonlinear Waves: A Geometrical Approach (Series On Analysis, Applications And Computation, #9)
by Angela Slavova and Petar Radoev Popivanov
This volume provides an in-depth treatment of several equations and systems of mathematical physics, describing the propagation and interaction of nonlinear waves as different modifications of these: the KdV equation, Fornberg-Whitham equation, Vakhnenko equation, Camassa-Holm equation, several versions of the NLS equation, Kaup-Kupershmidt equation, Boussinesq paradigm, and Manakov system, amongst others, as well as symmetrizable quasilinear hyperbolic systems arising in fluid dynamics.Readers...
Introduction To Differential Equations With Applications, An
by Harold Cohen and Daniel Gallup
This book is for students in a first course in ordinary differential equations. The material is organized so that the presentations begin at a reasonably introductory level. Subsequent material is developed from this beginning. As such, readers with little experience can start at a lower level, while those with some experience can use the beginning material as a review, or skip this part to proceed to the next level.The book contains methods of approximation to solutions of various types of diff...
An Introduction to Partial Differential Equations South Asian Edition
by Jacob Rubinstein and Yehuda Pinchover
A complete introduction to partial differential equations, this textbook provides a rigorous yet accessible guide to students in mathematics, physics and engineering. The presentation is lively and up to date, paying particular emphasis to developing an appreciation of underlying mathematical theory. Beginning with basic definitions, properties and derivations of some basic equations of mathematical physics from basic principles, the book studies first order equations, classification of second o...
Navier-Stokes Equations (Chicago Lectures in Mathematics) (Chicago Lectures in Mathematics Series CLM (CHUP))
by Peter Constantin and Ciprian Foias
Both an original contribution and a lucid introduction to mathematical aspects of fluid mechanics, Navier-Stokes Equations provides a compact and self-contained course on these classical, nonlinear, partial differential equations, which are used to describe and analyze fluid dynamics and the flow of gases.
Real Submanifolds in Complex Space and Their Mappings (PMS-47) (Princeton Mathematical)
by M. Salah Baouendi, Peter Ebenfelt, and Linda Preiss Rothschild
This book presents many of the main developments of the past two decades in the study of real submanifolds in complex space, providing crucial background material for researchers and advanced graduate students. The techniques in this area borrow from real and complex analysis and partial differential equations, as well as from differential, algebraic, and analytical geometry. In turn, these latter areas have been enriched over the years by the study of problems in several complex variables addre...
Stochastically Forced Compressible Fluid Flows (De Gruyter Series in Applied and Numerical Mathematics)
by Dominic Breit, Eduard Feireisl, and Martina Hofmanova
This book contains a first systematic study of compressible fluid flows subject to stochastic forcing. The bulk is the existence of dissipative martingale solutions to the stochastic compressible Navier-Stokes equations. These solutions are weak in the probabilistic sense as well as in the analytical sense. Moreover, the evolution of the energy can be controlled in terms of the initial energy. We analyze the behavior of solutions in short-time (where unique smooth solutions exists) as well as in...