"Geometric Structure of High-Dimensional Data and Dimensionality Reduction" adopts data geometry as a framework to address various methods of dimensionality reduction. In addition to the introduction to well-known linear methods, the book moreover stresses the recently developed nonlinear methods and introduces the applications of dimensionality reduction in many areas, such as face recognition, image segmentation, data classification, data visualization, and hyperspectral imagery data analysis. Numerous tables and graphs are included to illustrate the ideas, effects, and shortcomings of the methods. MATLAB code of all dimensionality reduction algorithms is provided to aid the readers with the implementations on computers.
The book will be useful for mathematicians, statisticians, computer scientists, and data analysts. It is also a valuable handbook for other practitioners who have a basic background in mathematics, statistics and/or computer algorithms, like internet search engine designers, physicists, geologists, electronic engineers, and economists.
Jianzhong Wang is a Professor of Mathematics at Sam Houston State University, U.S.A.
- ISBN13 9783642274961
- Publish Date 5 March 2012
- Publish Status Out of Print
- Out of Print 13 March 2021
- Publish Country DE
- Publisher Springer-Verlag Berlin and Heidelberg GmbH & Co. KG
- Imprint Springer-Verlag Berlin and Heidelberg GmbH & Co. K
- Edition 2012 ed.
- Format Hardcover
- Pages 356
- Language English