Learn how to use R 4, write and save R scripts, read in and write out data files, use built-in functions, and understand common statistical methods. This in-depth tutorial includes key R 4 features including a new color palette for charts, an enhanced reference counting system (useful for big data), and new data import settings for text (as well as the statistical methods to model text-based, categorical data).
Each chapter starts with a list of learning outcomes and concludes with a summary of any R functions introduced in that chapter, along with exercises to test your new knowledge. The text opens with a hands-on installation of R and CRAN packages for both Windows and macOS. The bulk of the book is an introduction to statistical methods (non-proof-based, applied statistics) that relies heavily on R (and R visualizations) to understand, motivate, and conduct statistical tests and modeling.
Beginning R 4 shows the use of R in specific cases such as ANOVA analysis, multiple and moderated regression, data visualization, hypothesis testing, and more. It takes a hands-on, example-based approach incorporating best practices with clear explanations of the statistics being done.
You will:
- Acquire and install R and RStudio
- Import and export data from multiple file formats
- Analyze data and generate graphics (including confidence intervals)
- Interactively conduct hypothesis testing
- Code multiple and moderated regression solutions
Who This Book Is For
Programmers and data analysts who are new to R. Some prior experience in programming is recommended.
- ISBN13 9781484260524
- Publish Date 18 October 2020
- Publish Status Active
- Publish Country US
- Imprint APress
- Edition 1st ed.
- Format Paperback
- Pages 467
- Language English