The theory of symmetric functions is an old topic in mathematics which is used as an algebraic tool in many classical fields. With $\lambda$-rings, one can regard symmetric functions as operators on polynomials and reduce the theory to just a handful of fundamental formulas. One of the main goals of the book is to describe the technique of $\lambda$-rings. The main applications of this technique to the theory of symmetric functions are related to the Euclid algorithm and its occurrence in division, continued fractions, Pade approximants, and orthogonal polynomials. Putting the emphasis on the symmetric group instead of symmetric functions, one can extend the theory to non-symmetric polynomials, with Schur functions being replaced by Schubert polynomials. In two independent chapters, the author describes the main properties of these polynomials, following either the approach of Newton and interpolation methods or the method of Cauchy.The last chapter sketches a non-commutative version of symmetric functions, using Young tableaux and the plactic monoid. The book contains numerous exercises clarifying and extending many points of the main text. It will make an excellent supplementary text for a graduate course in combinatorics.
- ISBN13 9780821828717
- Publish Date 1 January 2004
- Publish Status Active
- Out of Print 8 August 2021
- Publish Country US
- Imprint American Mathematical Society
- Edition illustrated Edition
- Format Paperback
- Pages 272
- Language English