Many complex systems - from immensely complicated ecosystems to minute assemblages of molecules - surprise us with their simple behaviour. Consider, for instance, the snowflake, in which a great number of water molecules arrange themselves in patterns with six-way symmetry. How is it that molecules moving seemingly at random become organized according to the simple, six-fold rule? How do the comings, goings, meetings and eatings of individual animals add up to the simple dynamics of ecosystem populations? More generally, how does complex and seemingly capricious micro-behaviour generate stable, predictable macro-behaviour? In this book, Michael Strevens aims to explain how simplicity can coexist with, indeed be caused by, the tangled interconnections between a complex system's many parts. At the centre of Strevens's explanation is the notion of probability and, more particularly, probabilistic independence. By examining the foundations of statistical reasoning about complex systems such as gases, ecosystems and certain social systems, Strevens provides an understanding of how simplicity emerges from complexity.
Along the way, he draws lessons concerning the low-level explanation of high-level phenomena and the basis for introducing probabilistic concepts into physical theory.
- ISBN10 0674010426
- ISBN13 9780674010420
- Publish Date 20 June 2003
- Publish Status Out of Print
- Out of Print 15 June 2010
- Publish Country US
- Imprint Harvard University Press
- Format Hardcover
- Pages 448
- Language English