Dr. Hongyi Xu got his BS(1985) and MS(1988) from Shanghai University of Technology, Shanghai, China and received Ph.D(1998) from Queens University at Kingston, Canada. He is currently a Professor at Fudan University, Shanghai, China.
He has conducted professional research in the fixed-wing and rotary-wing aerodynamics and thermal turbulence in high-temperature turbine of aero-engine. He had fifteen-years of working experience as a senior research officer in the Institute for Aerospace Research, National Research Council(IAR/NRC) of Canada. He was the rotary-wing group leader in the aerodynamic lab of IAR/NRC and was appointed by Department of National Defense as a chief-expert representative of Canada participating The Technology Collaboration Program (TTCP) activities involving United State, British, Canada, Australia and New Zeland. He was leading and participating a number of R&D research programs from both north america major aero-manufacturers and governmwent organizations, such as Canadian Bombardier Aircraft Company, Pratt-Whitney Aero-engine company,U.S. Bell Helicopter Incorporation and Defense Research Development Canada and Defense Research Establishment etc.

He joined the Department of Aeronautics and Astronautics, Fudan University as a senior professor in 2013. He has published many research papers in both internationally prestigious journals and conferences. He was invited by a number of well-known research organizations and universities to deliever speechs, such as the Oxford University in U.K., Siegen University in German, Japan Aerospace Exploration Agency(JAXA) and Taiwan Kaosiong University. He is currently leading a number of research programs from Chinese Natural Science Foundation and Shanghai Aeroengine Corporation. Academically, he is a well-known expert in direct numerical simulation of turbulence and establishs the wall-turbulence big databank at Fudan University. Based on these data, he pushs the front of the current Turbulent Boundary Layer theory and develops the complete law-of-the-wall formulations for wall-bounded turbulence. Moreover, he applys the modern neuro-network techniques to explore the innovative turbulence closure modelling.