Springer Texts in Electrical Engineering
2 total works
This volume is intended for engineers in research and development and applied mathematicians. It is also designed to be a useful reference for graduate students in linear systems with interests in control. With this purpose in mind, the discrete-time case is treated in an isomorphic fashion with the continuous-time case. The volume is self contained: four mathematical appendices develop the many specialized mathematical results needed in the main text. Emphasis is placed on the precise exposition of fundamental concepts and results. The main topics discussed are the dynamics of linear time-varying and time-invariant systems, stability, controlability and observability, realizations, linear feedback and estimation, linear quadratic optimal control and the main results of unity-feedback MIMO systems. At various places, basic computational issues and robustness issues are discussed.
This volume is the result of our teaching in the last few years of a first year graduate course on multivariable feedback systems addressed to control engineers. The prerequisites are modest: an undergraduate course in control (for acquaintance with concepts, terms, and design goals) and a senior-graduate course in linear systems. This volume covers lumped linear time-invariant multi-input multi-output systems with strong emphasis on control problems. The purpose is to provide a rapid introduction to some of the main and simpler results of control theory and to provide access to the current literature. Note that our exposition pays particular attention to the time-domain behavior of the systems under study. Note also that we cover neither optimization nor stochastic systems since these topics are treated in separate courses. As is obvious from its abundant literature, multivariable control is a very rapidly developing field. Consequently, we have no expectation that our exposition will become definitive; however, we hope that our efforts will be found useful. To get an idea of the contents, we suggest reading carefully the table of contents and the introduction of the chapters. Roughly, Chapter 1 is an introduction to feedback issues in a multivariable context (desensitization, large gain, singular values, etc. ). Chapters 2 and 3 cover the mathematical tools for handling transfer functions as polynomial-matrix fractions and for studying systems described by polynomial matrices. Chapter 4 uses these tools to cover the general theory of interconnected systems.