This thesis introduces novel and significant results regarding the analysis and synthesis of positive systems, especially under l1 and L1 performance. It describes stability analysis, controller synthesis, and bounding positivity-preserving observer and filtering design for a variety of both discrete and continuous positive systems.

It subsequently derives computationally efficient solutions based on linear programming in terms of matrix inequalities, as well as a number of analytical solutions obtained for special cases. The thesis applies a range of novel approaches and fundamental techniques to the further study of positive systems, thus contributing significantly to the theory of positive systems, a "hot topic" in the field of control.