Machine Learning Design Patterns: Solutions to Common Challenges in Data Preparation, Model Building, and MLOps

by Valliappa Lakshmanan

0 ratings • 0 reviews • 0 shelved
Book cover for Machine Learning Design Patterns

Bookhype may earn a small commission from qualifying purchases. Full disclosure.

The design patterns in this book capture best practices and solutions to recurring problems in machine learning. The authors, three Google engineers, catalog proven methods to help data scientists tackle common problems throughout the ML process. These design patterns codify the experience of hundreds of experts into straightforward, approachable advice.

In this book, you will find detailed explanations of 30 patterns for data and problem representation, operationalization, repeatability, reproducibility, flexibility, explainability, and fairness. Each pattern includes a description of the problem, a variety of potential solutions, and recommendations for choosing the best technique for your situation.

You'll learn how to:

Identify and mitigate common challenges when training, evaluating, and deploying ML models
Represent data for different ML model types, including embeddings, feature crosses, and more
Choose the right model type for specific problems
Build a robust training loop that uses checkpoints, distribution strategy, and hyperparameter tuning
Deploy scalable ML systems that you can retrain and update to reflect new data
Interpret model predictions for stakeholders and ensure models are treating users fairly
  • ISBN10 1098115783
  • ISBN13 9781098115784
  • Publish Date 31 October 2020 (first published 15 October 2020)
  • Publish Status Active
  • Publish Country US
  • Imprint O'Reilly Media
  • Format Paperback
  • Pages 400
  • Language English